您好,歡迎來到易龍商務(wù)網(wǎng)!
發(fā)布時間:2020-11-05 02:15  
【廣告】








山東烘干風(fēng)機(jī)在實(shí)際應(yīng)用過程中,葉片型線的優(yōu)化可能面臨一個問題。不同葉片高度的不同進(jìn)水條件導(dǎo)致葉片型線優(yōu)化結(jié)果差異過大,難以對葉片型線進(jìn)行過度優(yōu)化。為此,本文提出了多截面輪廓協(xié)同優(yōu)化的方法,建立了輪廓幾何與輪廓目標(biāo)函數(shù)之間的關(guān)系,使得到的輪廓滿足三維實(shí)際要求。在優(yōu)化過程中,增加了葉片型線的幾何分析和設(shè)計(jì)點(diǎn)氣流角的調(diào)整模塊,以保證獲得的葉片型線能達(dá)到與原型相同的氣流轉(zhuǎn)向能力。同時,山東烘干風(fēng)機(jī)設(shè)計(jì)點(diǎn)的氣動性能滿足一定要求,否則,可以以罰函數(shù)的形式盡快完成葉型的氣動分析,提高優(yōu)化過程的快速性。在確定優(yōu)化目標(biāo)時,綜合考慮了設(shè)計(jì)點(diǎn)的性能和非設(shè)計(jì)條件,山東烘干風(fēng)機(jī)對有效范圍內(nèi)的剖面性能進(jìn)行了研究。目標(biāo)函數(shù)括號中的項(xiàng)為設(shè)計(jì)點(diǎn)損失,第二項(xiàng)為有效流入流角范圍,邊界為設(shè)計(jì)點(diǎn)損失的1.5倍,第三項(xiàng)為失速裕度,第四項(xiàng)為有效流入流角范圍內(nèi)的平均損失,第五項(xiàng)為平均損失差的方差。有效流入角范圍內(nèi)的分布。分子是分析葉片外形的氣動性能,分母是原型參考值。山東烘干風(fēng)機(jī)利用加權(quán)因子w對截面之間的關(guān)系進(jìn)行加權(quán),設(shè)置目標(biāo)函數(shù),得到損失小、失速裕度高的多截面S1剖面。通過對山東烘干風(fēng)機(jī)設(shè)計(jì)參數(shù)和S2設(shè)計(jì)參數(shù)的多次迭代,得到了一個接近設(shè)計(jì)要求的初步三維設(shè)計(jì)方案。各參數(shù)的權(quán)重和各截面的權(quán)重系數(shù)決定了優(yōu)化目標(biāo)是集中于中間截面的性能,以及中間截面的損失和末端截面的失速裕度。

根據(jù)以往對山東烘干風(fēng)機(jī)亞音速定子葉片的研究,前緣彎曲用于匹配迎角[20],根部彎曲高度為20%,端部彎曲角度為20,頂部彎曲高度為30%,端部彎曲角度為40,如圖18左側(cè)所示。彎曲高度和彎曲角度的選擇是基于流入流的流動角度條件:如圖5中藍(lán)色箭頭所示,定子葉片的流入角度受上游動葉片的影響,靠近端壁有兩個不符合主流分布趨勢的區(qū)域,而彎曲高度末端彎板的T應(yīng)覆蓋與流動角度匹配的區(qū)域;63m3_s-1流量范圍內(nèi),總壓和效率的平均相對誤差分別為3。末端彎板角度的選擇基于區(qū)域和主流流動角度之間的差異。
根據(jù)前面的研究,山東烘干風(fēng)機(jī)前緣彎曲的定子葉片可以有效地消除流入攻角,但葉片的局部端部彎曲會導(dǎo)致葉片局部反向彎曲的形狀效應(yīng)。在保證端部攻角減小的同時,定子葉片端部的阻塞量增大,損失增大。在端部彎曲建模的基礎(chǔ)上,適當(dāng)疊加葉片正彎曲建模,可以減小端部攻角,保證定子葉片和級間的有效流動。通過實(shí)驗(yàn)設(shè)計(jì)的方法,得到了合適的前彎參數(shù):山東烘干風(fēng)機(jī)彎曲高度60%,輪轂彎曲角度40,翼緣彎曲角度20,基本符合以往研究得出的彎曲葉片設(shè)計(jì)參數(shù)選擇規(guī)則。不同葉柵的吸力面徑向壓力梯度和出口段邊界層邊界的徑向壓力梯度可以很好地進(jìn)行比較。在帶端彎和正彎葉片的三維復(fù)合葉片表面,存在兩個明顯的徑向壓力梯度增大區(qū)域,形成從端彎到流道中徑的徑向力,引導(dǎo)山東烘干風(fēng)機(jī)葉片表面邊界層的徑向重排。5%[18],改變后風(fēng)機(jī)葉尖間隙的較小相對徑向間隙為1%,滿足正常運(yùn)行的要求,如表1所示。從出口段附面層的邊界形狀可以看出,復(fù)合三維葉片試圖使葉片的徑向附面層均勻化,消除了葉片角部區(qū)域的低能流體積聚,對提高葉片邊緣起到了明顯的作用。

介紹了一套高負(fù)荷山東烘干風(fēng)機(jī)的氣動設(shè)計(jì)過程,包括參數(shù)選擇、葉片形狀優(yōu)化和三維葉片的設(shè)計(jì)思想。在此基礎(chǔ)上,完成了高負(fù)荷軸流風(fēng)機(jī)壓力比1.20的初步設(shè)計(jì),負(fù)荷系數(shù)高達(dá)0.83。其次,在初步設(shè)計(jì)方案中,通過對山東烘干風(fēng)機(jī)靜葉多葉高處S1流面剖面的協(xié)調(diào)優(yōu)化,有效地減少了靜葉損失,提高了風(fēng)機(jī)的裕度。同時,采用三維葉片技術(shù),提高了定子葉片的端部流動,提高了定子葉片端部區(qū)域的工作能力。風(fēng)機(jī)裕度由27.1%擴(kuò)大到48.8%。優(yōu)化葉頂間隙形狀可以有效地提高軸流風(fēng)機(jī)的性能。采用FLUENT軟件對OB-84動葉可調(diào)軸流風(fēng)機(jī)在均勻和非均勻間隙下的性能進(jìn)行了數(shù)值模擬,討論了不同間隙形狀對泄漏流場和間隙損失分布的影響。結(jié)果表明,在平均葉頂間隙不變的前提下,錐形間隙風(fēng)機(jī)的總壓力和于均勻間隙風(fēng)機(jī),區(qū)范圍擴(kuò)大,錐形間隙越大,性能改善越顯著;錐形間隙改變了間隙內(nèi)渦量場的分布,減少了葉尖泄漏損失,增強(qiáng)了山東烘干風(fēng)機(jī)葉片上、中部的功能力。風(fēng)機(jī)的性能低于均勻間隙的性能。錐形葉片的葉尖間隙形狀可以作為提高風(fēng)機(jī)性能的重要手段。在帶端彎和正彎葉片的三維復(fù)合葉片表面,存在兩個明顯的徑向壓力梯度增大區(qū)域,形成從端彎到流道中徑的徑向力,引導(dǎo)山東烘干風(fēng)機(jī)葉片表面邊界層的徑向重排。

GAMBIT軟件用于山東烘干風(fēng)機(jī)模型建立和網(wǎng)格生成。考慮到山東烘干風(fēng)機(jī)葉片翼型結(jié)構(gòu)的復(fù)雜性和頂部區(qū)域的三維流動,首先選擇三角形網(wǎng)格劃分葉片頂部,并利用尺寸函數(shù)對網(wǎng)格進(jìn)行細(xì)化,以保證山東烘干風(fēng)機(jī)網(wǎng)格質(zhì)量。其它區(qū)域的網(wǎng)格劃分為動葉區(qū)域網(wǎng)格作為參考,采用結(jié)構(gòu)化/非結(jié)構(gòu)化混合網(wǎng)格。為了保證精度和網(wǎng)格獨(dú)立性,對原風(fēng)機(jī)在216萬、245萬、286萬和337萬網(wǎng)格條件下的性能進(jìn)行了模擬。結(jié)果表明,隨著網(wǎng)格數(shù)量的增加,總壓和效率逐漸接近樣本值,337萬和286萬網(wǎng)格的總壓和效率偏差分別為0.085%和0.024%。綜合模擬精度和網(wǎng)格數(shù)確定了所用的總網(wǎng)格數(shù)。這個數(shù)字是286萬。其中動葉面積198萬片,集熱器、導(dǎo)葉面積和擴(kuò)壓管網(wǎng)格數(shù)分別為30萬片、26萬片和32萬片。在模擬葉尖間隙形狀的變化之前,將原始風(fēng)扇的模擬結(jié)果與參考文獻(xiàn)中的山東烘干風(fēng)機(jī)性能進(jìn)行了比較。從圖17可以看出,定子葉片損失減小,裕度增大,這與不同截面的S1流面性能分析結(jié)果相似。結(jié)果表明,在33.31-46.63m3_s-1流量范圍內(nèi),總壓和效率的平均相對誤差分別為3.0%和1.5%,表明結(jié)果能夠反映風(fēng)機(jī)的實(shí)際性能。